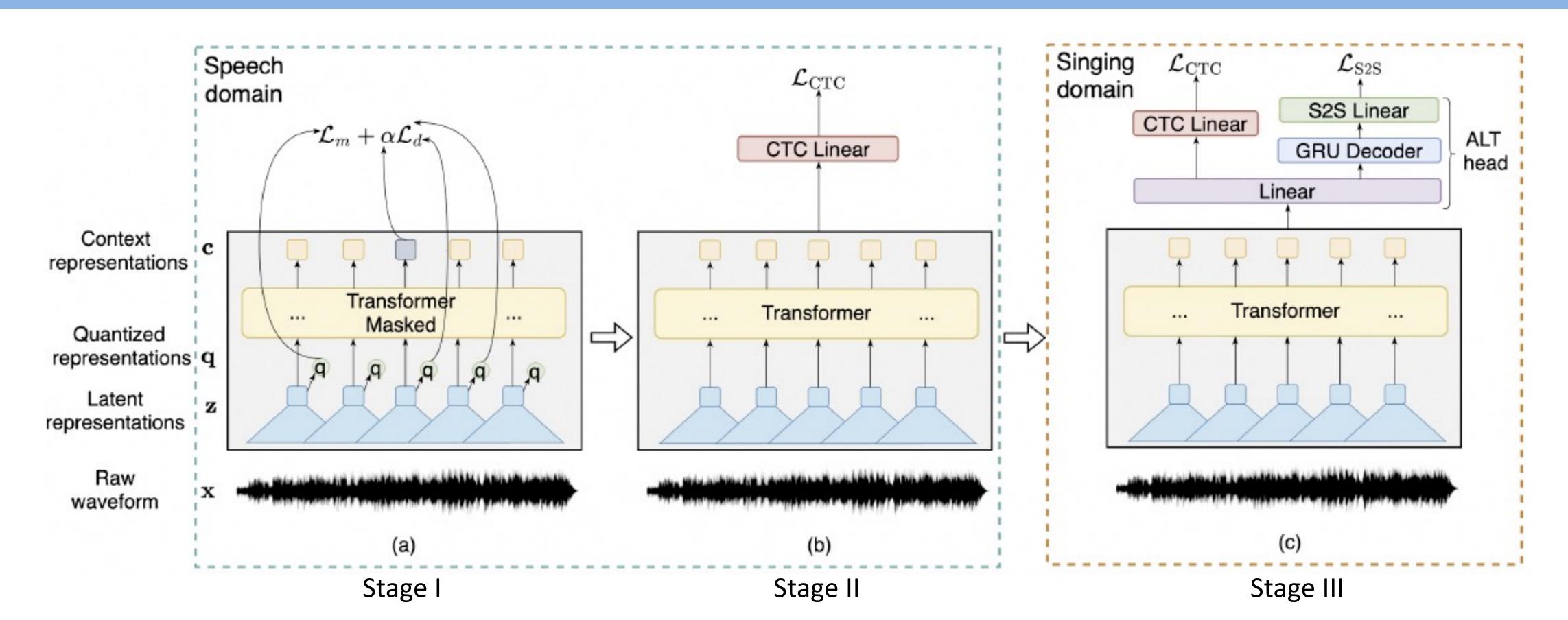


Transfer Learning of wav2vec 2.0 for Automatic Lyric Transcription

Longshen Ou*, Xiangming Gu*, Ye Wang (*Both authors contributed equally to this research)



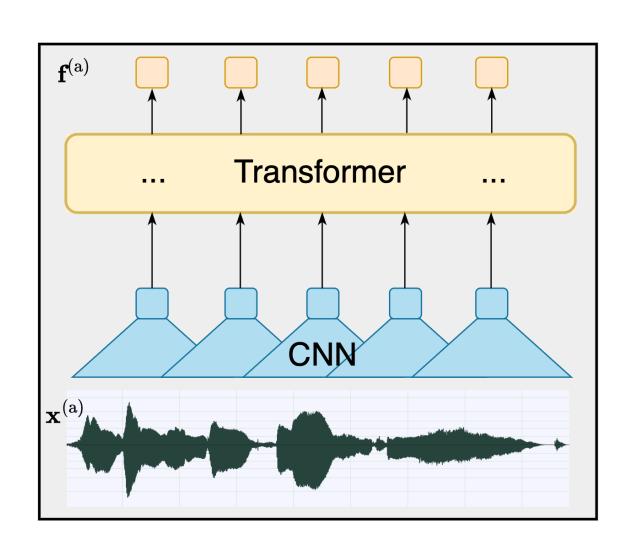
Introduction:

➤ The task of Automatic lyric transcription (ALT):

- > ALT is difficult, because
- Degraded intelligibility of sung words
- Perturbations, e.g., musical accompaniments, other ambient noise, etc.
- Small datasets
- We propose to design a transfer-learning-based system to solve this problem
 - To utilize the similarity between speech and singing
 - To reduce the amount of labeled data needed

Our System:

> wav2vec 2.0 as the encoder



Structure: CNN + Transformer

Pretraining objectives:

- **1. Masked input**, to learn contextualized representation
- 2. Contrastive loss, to encourage contextualized feature to only be similar to local feature of the same frame
- > Training procedures:
- 1. Stage I: Pretraining on speech
- 2. Stage II: Finetuning on ASR task, on speech domain
- 3. Stage III: Finetuning on ALT task, on singing domain
- Extend to hybrid CTC/attention
- Training objective: weighted CTC and sequence-to-sequence loss

$$\mathcal{L}_w = \lambda_a \mathcal{L}_{CTC} + (1 - \lambda_a) \mathcal{L}_{S2S}$$

- Inference: weighted likelihood of CTC, decoder, and language model

$$egin{aligned} oldsymbol{w}' &= rg \max_{oldsymbol{w}} \lambda_b \log \sum_{oldsymbol{\pi} \in \mathcal{B}^{-1}(oldsymbol{w})} \prod_{t=1}^T p(oldsymbol{\pi}_t | oldsymbol{f}_t) \\ &+ (1 - \lambda_b) \log \prod_{s=1}^S p(oldsymbol{w}_s | oldsymbol{w}_{< s}, oldsymbol{f}_{1:T}) \\ &+ \lambda_c \log p_{LM}(oldsymbol{w}) \end{aligned}$$

• Experiments:

We achieve state-of-the-art performance on various benchmark datasets (metric: word error rate, WER, lower is better)

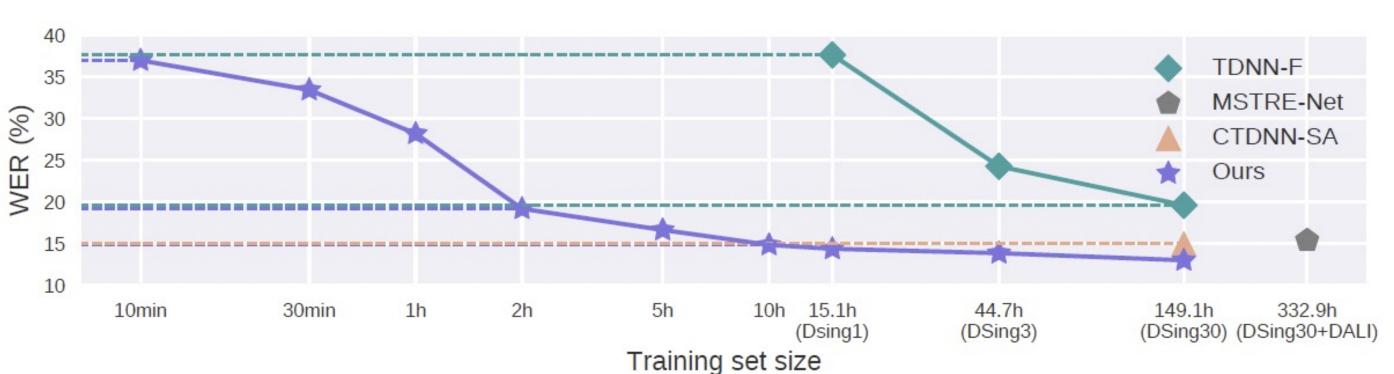
Method	DSingdev	DSingtest	DALItest	Jamendo	Hansen	Mauch
TDNN-F [5]	23.33	19.60	67.12	76.37	77.59	76.98
CTDNN-SA [6]	<u>17.70</u>	14.96	76.72	66.96	78.53	78.50
Genre-informed AM [3]	-	56.90	-	50.64	39.00	40.43
MSTRE-Net [7]	-	15.38	42.11	34.94	36.78	37.33
DE2 - segmented [4]	_	72	2	44.52	49.92	-
Ours	12.34	12.99	30.85	33.13	18.71	28.48

➤ Ablation studies show the necessity of all three training stages, and the effectiveness of hybrid CTC/attention

3			
Method	DSingdev	DSing ^{test} 12.99	
Ours	12.34		
- Finetuning	12.64 (+ 0.30)	14.58 (+ 2.59)	
- Pretraining	35.61 (+24.27)	39.13 (+26.14)	

Method	DSing ^{dev}	DSingtest
CTC	19.86	20.99
+ S2S	15.63 (-4.23)	16.95 (-4.04)
+LM	12.34 (-7.52)	12.99 (-8.00)

Our system demonstrates effectiveness in low-resource experiment setups:



Take-aways

- We presented an ALT solution that takes advantage of similarity between speech and singing, by transfer learning of wav2vec 2.0 on singing data
- Our method surpass previous ones on various ALT datasets, and still demonstrate competitive results with very limited labeled data.
- Check out our project website <u>github.com/guxm2021/ALT_SpeechBrain</u>, or scan this QR code:

