

Raga Classification from Vocal Performances Using Multimodal Analysis

Martin Clayton¹, Preeti Rao², Nithya Sikharpur², Sujoy Roychowdhury², Jin Li¹

¹Department of Music, Durham University, United Kingdom

²Department of Electrical Engineering, Indian Institute of Technology Bombay, India

Motivation

A singer's gesture while performing a raga

- Musical gesture studies [1] build on those of speech-accompanying gesture
- Indian vocal music has featured prominently in this field due to its rich use of manual gestures

Multimodal Classification Architecture

Multimodal raga classification architecture

- Gesture styles are idiosyncratic (varies between teacher-student or siblings)
- Nonetheless, gestures often seem to accompany (and illustrate) aspects of melody
- "Can ragas be classified using movement information alone, or can movement information help to disambiguate raga identity?"

Multimodal Classification Objective

- Train a deep learning classifier using
 - Unimodal features from audio and video
 - Try different multimodal classification methods and compare performance

Dataset Description and Raga Information

We use an OSF dataset comprising alap (2 takes/(raga, singer) x 3 mins/take) and characteristic phrases (pakad, 4 takes/raga x 20s/take) in 9 ragas, sung by 3 professional artists (~3.5 hours total)

Extracting Video Features

Sample OpenPose output & Sample video features for normalization box one 12s clip

- We use OpenPose 2D pose estimation [2] to track a set of upper-body keypoints
- Normalize keypoints based on square bounding box around singer to a range of [0,1]
- Use only the positions of right and left wrists
- Any missing data is interpolated and lowpass filtering applied for smoothing

Train/Test Splits

Multimodal Experiments

- Source Fusion Combine audio and video features (model C)
- Latent Fusion Use frozen weights of the best model from (A) and (B) and train inception and final layers (model D)
- Late fusion Train a classifier (RF etc.) on top of predicted softmax of unimodal models A and B (model E)

Model Results

Data Split	Seen Singer		Unseen Singer		
	Audio	Video	Audio	Video	
AG	92.1	36.3	76.9	14.3	
CC	79.4	31.8	60.4	13.8	
SCh	77.0	39.2	67.2	10.0	

Unimodal validation accuracy

Model Type	Model Name	AG	CC	SCh	Mean
A	Video	36.3	31.8	39.2	35.8
В	Audio	92.1	79.4	77.0	82.8
С	Source fusion	30.1	42.4	35.8	36.1
D	Latent fusion	93.3	82.7	79.2	85.1
E1	Equal voting	85.9	73.7	67.9	75.8
E2	Stacking classifier – RF	81.9	74.2	76.3	77.5

Raga	Scale
Bageshree (Bag)	S R g m P D n
Bahar	SRgmPDnN
Bilaskhani Todi (Bilas)	SrgmPdn
Jaunpuri (Jaun)	SRgmPdn
Kedar	SRGmMPDN
Marwa	SrGMDN
Miyan ki Malhar (MM)	SRgmPDnN
Nand	SRGmMPDN
Shree	SrGMPdN

The notes of each raga; S is the tonic note

Extracting Audio Features

Data	Seen split			Unseen split		
split	AG	CC	SCh	AG	CC	SCh
Train	5590	5487	5588	4715	4105	4304
Validation	972	1075	974	1847	2457	2258

Seen and unseen split sizes by 12s segments

- Recordings are split into overlapping 12s segments (order of phrase duration)
- Seen singer split 1 alap take of one singer in validation, rest in train
- Unseen singer split All recordings of one singer in the validation, rest in train

Multimodal validation accuracy

Comparison of unimodal and latent fusion models. 3-bit code indicating if audio, video and latent fusion models are correct (1) or wrong (0) respectively

Conclusions

- Unimodal audio results much better than video
- There is complementary information in video to improve multimodal performance over audio with latent fusion

- We use source separation of vocal from background tanpura.
- We extract vocal pitch and binary voicing at 10 ms intervals. Interpolate across short silence segments (<250 ms)
- We apply tonic normalization to obtain pitch in cents with reference to the singer's tonic.

Architecture Components

- Convolutional layers for feature extraction
- Inception layer to process multiscale information
- Layers separately hyperparameter tuned for individual experiments

Unimodal Experiments

- Unimodal Video- Use video features (model A)
- Unimodal Audio- Use audio features (model B).

References

[1] Godøy, R. Inge, M. Leman, eds. Musical gestures: Sound, movement, and meaning. Routledge, 2010.

[2] Cao, Zhe, et al. "Realtime multi-person 2d pose estimation using part affinity fields." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

