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Overview

Experimental Evaluation

DL Architecture

Music Emotion Quantification

Melody Context Encoder

▪ A representation of melodies as input and outputs a 128-dimensional embedding 

at every time unit

▪ Use Bi-LSTM or Transformer encoder as Melody Context Encoder

Arrangement Decoder

▪ Output arrangement information such as chords and tempi based on melody 

embedding and emotion

▪ Forward propagation only to reduce computational costs and to allow inference 

based only on historical information for near real-time applications

▪ Objective
▪ Building a system that automatically arranges the melody to express the 

specific emotion

▪ Harmonize melody

▪ Change tempo

Cm

▪ Contributions
▪ Proposed architecture for learning the relationships between symbolic 

melodies, chord progressions, tempo and expressed emotions

▪ Can generate emotion-driven arrangements faster than ever before

▪ A dataset of 4000 symbolic scores and emotion labels was gathered by 

expanding the HTPD3 dataset with mood tags from last.fm and allmusic.com

▪ Evaluation experiments prove the effectiveness of the transfer learning and 

show the impact of the methods of quantifying emotions

▪ Convert emotional tags into numerical expression
▪ Use statistics (Warriner et al. 2013) on arousal-valence scores for emotional words

▪ Russell’s circumplex model (Russell 1980)

▪ Arousal: How excited (aroused)?

▪ Valence: How positive or negative (valence)

▪ Handling of multiple emotion tags
▪ Emotion Average Representation (EAR)
▪ Using the average of the arousal-valence 

scores of all tags

▪ Emotion Surface Representation (ESR) 
▪ Using GMMs to represent surfaces on 

arousal-valence spaces

▪ Random sampling of 10000 points from 

the mean and standard deviation for all 

emotional words and perform GMM

Emotion Category Representation (ECR)
▪ The AV space quadrant with the highest AV 

annotations determines the emotional 

category of the music

▪ Experimental Conditions
▪ Dataset (HED)

▪ Symbolic lead sheet data + emotional information dataset (4000 tracks)

▪ expanding the HTPD3 with mood tags from last.fm and allmusic.com

▪ Comparisons

▪ Different melody context encoders

▪ BLSTM without transfer learning or with transfer learning

▪ Transformer encoder without transfer learning or with transfer learning

▪ Groundtruth labelled by humans

▪ Procedures

▪ Participants listened to all comparisons generated from the 15 emotion presets

and responded to the following:

▪ Musical coherence of melody and chords

▪ How exciting (arousal) do you perceive the music to be?

▪ How negative or positive (valence) do you perceived the music to be?

▪ Participants: 20 Japanese (Women: 7, Men: 7, Average age 30.15)

▪ Results

Transfer Learning Strategy

▪ Encoders are pre-trained using music examples without emotion labels

▪ The pre-trained encoders (weights are fixed) and randomly initialized decoders 

are concatenated and retrained only for the subset of tracks with emotion labels

▪ Absolute emotion error
▪ EAR: Euclidean distance between input and evaluation emotions

▪ ESR: Negative log likelihood calculated from the GMM at the point of the evaluated emotion

▪ ECR: Euclidean shortest distance between the quadrant and the evaluated emotion 

▪ Relative emotion error
Absolute emotion error of AI−generated arrangements

Absolute emotion error between evaluated groundtruth emotion and network input emotion

EAR

ESR ECR

E.g.
Tags:

Amiable

Joyous

Playful

Average

Generated Tempi

Emotion Errors

▪ The highest perceived musical coherence + The lowest absolute and relative emotion 

errors ➔ BLSTM with transfer learning

▪ Less than approximately 2.5 seconds per 16 bars for proposed models (faster than 

previous study: 50 seconds per 16 bars for the method proposed by Makris et al.)

▪ The generated tempo was most varied when ESR was used as input

▪ Possibility of overfitting or insufficient training data

Discussion
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