Expressive Synthesized Data from Sampled Instruments

¹University of California San Diego²Tencent Al Lab

What We Do

Choral music separation refers to the task of extracting tracks of voice parts (e.g., soprano, alto, tenor, and bass) from mixed audio. We make three contributions on the choral music separation task:

Dataset Specification

Our provided dataset is synthesized from there instrument plugins: piano, vocal, and strings. The sampled instruments we use are listed below:

- An automated pipeline for synthesizing choral music data from sampled instrument plugins within controllable options for instrument expressiveness.
- A **8.2-hour-long** choral music dataset from the JSB Chorales Dataset.
- Multiple separation models of 4-part choral music separation from different backbones.

Pitch range

Name	Туре	Soprano	Alto	Tenor	Bass
Standard MIDI		A0–C8	A0–C8	A0–C8	A0–C8
Noire [17]	Piano	A0–C8	A0–C8	A0–C8	A0–C8
Grandeur [18]	Piano	A0–C8	A0–C8	A0–C8	A0–C8
Voices Of Rapture [19]	Vocal	B3-D6	E3–G5	B2–C#5	A1–D4
Dominus Choir [20]	Vocal	G3–A5	G3–A5	E2–G4	E2–G4

String datasets are sampled from *Intimate Strings Bundle*, which is detail provided in our paper.

Data Synthesis Pipeline and Model Training Pipeline							
Synthesis Pipeline	Training Pipeline						
The Symbolic Dataset - JSB Chorale Python Scripts Reaper DAW	Symbolic Choral Dataset						

Experiments on Different Separation Backbones

We apply four backbones to train the choral music separation models on our proposed dataset:

Standard	Model	Median Source-Distortion Ratio (dB)				
Dataset	WIGUCI	Soprano	Alto	Tenor	Bass	Avg.
Piano	Spec-U-Net [7]	9.78	9.46	10.35	10.60	10.05
Piano	Res-U-Net [8]	8.53	9.01	9.97	12.23	9.94
Piano	Wave-U-Net [9]	6.95	5.36	7.21	9.82	7.34
Piano	Conv-TasNet [10]	7.04	6.98	7.29	7.82	7.28
Vocal	Spec-U-Net [7]	10.45	10.19	12.25	9.53	10.61
Vocal	Res-U-Net [8]	9.35	10.87	10.20	10.77	10.30

Experiments on Finetuning Experiments

We evaluated the separation models pretrained by our dataset on the real choral music separation datasets, to determine if they get improvements:

Vocal	Wave-U-Net [9]	2.65	3.08	3.06	3.90	3.17
Vocal	Conv-TasNet [10]	6.60	6.12	6.41	6.58	6.43

Among four backbones, Spec-U-Net and Res-U-Net, as frequency-domain models, perform better than Wave-U-Net and Conv-TasNet as time-domain models.

In both Cantoria Dataset and Choral Singing Dataset, our pretrained models achieve significant better results in the source-to-distortion ratio performance.

