

Sound & Music Computing Lab

Domain Adversarial Training on Conditional VAE for Controllable Music Generation

MUSIC X LAB

Jingwei Zhao Gus Xia Ye Wang

MOTIVATION

- The conditional VAE architecture can suffer from "condition collapse", because z_x is often too informative so the the decoder tends to ignore condition c.
- Domain adversarial training (DAT) can induce representation z_x to be disentangled from *c*, but it only applies to simple scenarios with categorical condition.
- We propose an adversarial condition de-

MODEL ARCHITECTURE

noising objective and generalize DAT to controllable music generation with complex sequential condition (e.g., melody).

CHORD REPRESENTATION

OBJECTIVES & TRAINING

• VAE Objective

DEMO: CHORD GENERATION WITH VARIED MELODY CONDITIONS

$$\mathcal{L}(\theta_{\text{enc}}, \theta_{\text{dec}}) = -\mathbb{E}_Q \left[\log P_{\theta_{\text{dec}}} \left(x \mid z_x, c \right) \right] + \alpha \mathbb{KL}(Q_{\theta_{\text{enc}}}(z_x \mid x, c) \parallel \mathcal{N}(\mathbf{0}, \mathbf{1})),$$
(1)

Adversarial Objective

 $\mathcal{L}(\theta_{\rm dis}) = -\mathbb{E}_Q \left[\log R_{\theta_{\rm dis}} \left(c \mid z_x, c^* \right) \right], \qquad (2)$ $\mathcal{L}(\theta_{\rm enc} \mid \theta_{\rm dis}) = -\mathbb{E}_Q \left[\log R_{\theta_{\rm dis}} \left(\mathbf{1} - c \mid z_x, c^* \right) \right] \\ + \alpha \mathbb{KL}(Q_{\theta_{\rm enc}}(z_x \mid x, c) \parallel \mathcal{N}(\mathbf{0}, \mathbf{1})), \qquad (3)$

• Training Procedure

1 while training do

- 3 Optimize VAE with $\mathcal{L}(\theta_{enc}, \theta_{dec})$,
- 4 **for** *j iterations* **do**
- 5 **for** *k iteration* **do**
 - Optimize discriminator with $\mathcal{L}(\theta_{dis})$,
- **for** *l iterations* **do**
- Optimize encoder with $\mathcal{L}(\theta_{enc} \mid \theta_{dis})$.
- Training Loss Curve

EXPERIMENTS

• Ablation Models

Non-DAT: Same VAE framework but without a discriminator. It does not explicitly try to disentangle z_x from *c* using domain adversarial training (DAT);

Mask-CR: Applying a general masking corruption instead of pitch transposition for condition corruption;

Non-CR: Using the conventional DAT objective without condition corruption. It predicts c directly from z_x using a GRU-based discriminator.

• Objective Evaluation

Disentanglement

• Subjective Evaluation

Figure 7: Subjective evaluation on the harmonization performance of our model and baseline models.

Figure 8: Object evaluation on representation similarity (invariance) against pitch transposition. A higher value denotes better disentanglement.

Figure 9: Objective evaluation on harmony histogram upon melody swapping. A higher ratio in root, 3rd, and 5th notes indicates a higher degree of controllability.