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AV emotion recognition from audio Dataset
< Our task: Predict overall perceived emotion < The dataset consists of 2,092 track previews
(arousal and valence, AV) of a music track from covering 1,404 genres, with pairwise relative AV
audio. judgments by 20 annotators. We used Spotify API
< Problem: Existing datasets are limited in coverage to preselect tracks and gather audio previews.
and do not represent a large variety of music < Tracks are organized in triplets. For each pair in a
available on commercial music platforms. There triplet, 3 annotators voted on which song has
Is no common benchmark dataset to compare higher arousal/valence using an annotation tool
models proposed by researchers and trained on with loudness compensation.
different datasets.
Task: arousal_and_valence
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External validation with MusAV < We gathered annotations for 7 annotation chunks

, , with 100 triplets each, 20% genre-triplets (all
<+ We trained and compared AV regression models

. . | tracks from the same genre), 80% global-triplets
bullt on 3 datasets with absolute AV annotations

. , , (tracks across different genres).
éEnrnnbOel\glchj?:\CéSDEAIE/IIE’ffI\I\/II;JtS—e[))ichJ;igg 3 ?:IEZSCEL?;(;;) % We provide ground truth subsets of annotated

, track pairs based on different levels of agreement
VGGish) [1-3].

across annotators and triplet consistency (full
% The downstream models are based on a fully . . :
, , N , agreement vs. majority agreement with/without
connected layer with a linear activation function.

. . triplet consistency).
+ In addition we used AV values provided by the

Spotify APl as an additional reference. Agreement m pg::usqi/ P G\i’rqslence o
< All pretrained models are available as part of EMAEMA 1448 694 134] 64.3

Essentia: https://essentia.upf.edu/models.ntml A 975 468 810 38.8

% We evaluate our models on annotated pairs of "M+MA, CT 738 354 606 29.]
tracks (e.g., song A has higher valence or arousal A CT o9 248 381 18.3
than song B), computing the percentage of pairs
for which the model predictions correspond to the
ground truth.

% We observed fair to moderate agreement
between annotators: ordinal Krippendorff's alpha
of 0.48 for arousal and 0.39 for valence, consistent
with previous studies.
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