SUPERVISED AND UNSUPERVISED LEARNING OF AUDIO **REPRESENTATIONS FOR MUSIC UNDERSTANDING**

OBJECTIVES

- Provide a **broad set of baselines** for music understanding tasks
- **Compare** the effectiveness of **supervised** and unsupervised learning objectives at scale
- Investigate the **impact of training dataset content** and batch size for training unsupervised models
- Release a model to enable and accelerate downstream research in audio and / or multimodal understanding for music.

MODEL

Short Fast Normalizer Free Net (SF-NFNet-F0)

Stage	Slow path	Fast path				
spectrogram	20	-				
data layer	stride 4,1	stride 1, 1				
stem1	$1 \times 3, 16$ stride 2, 2	$3 \times 3, 2$ stride 2, 2				
stem2	$1 \times 3, 32$ stride 1, 1	$3 \times 3, 4$ stride 1, 1				
stem3	$1 \times 3,64$ stride 1,1	$3 \times 3, 8$ stride 1, 1				
stem4	$3 \times 3, 128$ stride 2, 2	$3 \times 3, 16$ stride 2, 2				
block1	$\begin{bmatrix} 1 \times 1, 128 \\ 1 \times 1, 128 \\ 1 \times 3, 128 \\ 1 \times 1, 256 \end{bmatrix} \times 1$	$\begin{bmatrix} 1 \times 1, 16 \\ 3 \times 1, 16 \\ 1 \times 3, 16 \\ 1 \times 1, 32 \end{bmatrix} \times 1$				
block2	$\begin{bmatrix} 1 \times 1, 256 \\ 1 \times 1, 256 \\ 1 \times 3, 256 \\ 1 \times 1, 512 \end{bmatrix} \times 2$	$\begin{bmatrix} 1 \times 1, 32 \\ 3 \times 1, 32 \\ 1 \times 3, 32 \\ 1 \times 1, 64 \end{bmatrix} \times 2$				
block3	$\begin{bmatrix} 1 \times 1,768 \\ 3 \times 1,768 \\ 1 \times 3,768 \\ 1 \times 1,1536 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 96 \\ 3 \times 1, 96 \\ 1 \times 3, 96 \\ 1 \times 1, 192 \end{bmatrix} \times 6$				
block4	$\begin{bmatrix} 1 \times 1,768 \\ 3 \times 1,768 \\ 1 \times 3,768 \\ 1 \times 1,1536 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1,96 \\ 3 \times 1,96 \\ 1 \times 3,96 \\ 1 \times 1,192 \end{bmatrix} \times 3$				
Glo	bal average pool & co	ncatenate				
		63M Param				

- 15 Datasets / Annotations
- Embeddings global-average pooled along track length.
- Probes consist of **MLPs**
- Probe hyperparameters optimized, respecting same restrictions as previous audio representation work

PRETRAINING METHODOLOGY

Sup

ULarge/USmall

Datasets

EVALUATION

• 7 Distinct Audio Collections

Evaluation Datasets ຊິ 200k-3 2k-

M. C. McCallum, F. Korzeniowski, S. Oramas, F. Gouyon, A. F. Ehmann

Sirius XM, USA

Model	MS mAP	DS ROC	MS mAP	D50 ROC	MSI mAP	D100 ROC	MSI mAP	0500 ROC	Mu mAP	ıMu ROC	AN mAP	IM ROC	Jam- mAP	MT ROC
Musicset-Sup Audioset-Sup	0.363 0.308	0.903 0.880	0.459 0.375	0.913 0.883	0.346 0.278	0.906 0.877	0.169 0.128	0.898 0.874	0.257 0.191	0.908 0.867	0.180 0.156	0.791 0.760	0.161 0.137	0.786 0.749
usicset-ULarge udioset-ULarge	0.351 0.311	0.900 0.885	0.438 0.377	0.908 0.886	0.321 0.276	0.897 0.878	0.152 0.121	0.891 0.873	0.235 0.162	0.893 0.855	0.174 0.156	0.784 0.763	0.158 0.142	0.781 0.765
usicset-USmall udioset-USmall	0.319 0.286	0.888 0.876	0.384 0.353	0.892 0.878	0.283 0.251	0.881 0.870	0.129 0.110	0.878 0.868	0.190 0.152	0.871 0.850	0.155 0.151	0.762 0.753	0.138 0.136	0.757 0.753
SOTA	0.348 [15]	0.897 [15]	0.386 [14]	0.921 [14]	0.185 [22]	-	-	-	-	0.888* [42]	0.163 [37]	0.773 [37]	0.161 [†] [49]	0.781 [†] [49]

M'	IT	GTZAN	NSynth _P	NSnyth _I	$Emo_V r^2$	Emo _A	GS _{Key}	Jam	n-50	Jam-	All
mAP	ROC	Acc	Acc	Acc		r ²	W. Acc	mAP	ROC	mAP	ROC
0.413	0.917	0.835	0.793	0.731	0.566	0.726	0.286	0.321 0.284	0.843	0.162	0.839
0.386	0.904	0.748	0.819	0.676	0.341	0.545	0.210		0.822	0.135	0.813
0.404	0.914	0.735	0.892	0.740	0.577	0.700	0.667	0.317 0.285	0.839	0.159	0.833
0.391	0.906	0.672	0.805	0.721	0.438	0.624	0.287		0.826	0.131	0.816
0.389	0.905	0.686	0.824	0.714	0.389	0.668	0.508	0.292	0.828	0.138	0.817
0.375	0.897	0.648	0.777	0.698	0.386	0.609	0.197	0.268	0.817	0.127	0.809
0.414 0.395	0.915	0.797 -	- 0.880	- 0.782	0.617	0.721	0.667	-	-	-	-
0.384 [37]	0.92 [12]	0.821 [11]	 55	0.741 [43]	0.556 [44]	0.704 [45]	0.796 * [46]	0.298 [47]	0.832 [47]	-	-
	M [*] mAP 0.413 0.386 0.404 0.391 0.389 0.375 0.414 0.395 0.384 [37]	MTT ROCnAPROC0.4130.917 0.9040.3860.914 0.9060.3010.914 0.905 0.3750.3890.905 0.8970.414 0.3950.915 0.8970.384 [37]0.92 [12]	MTTGTZAN Acc0.4130.9170.8350.3860.9040.7480.4040.9140.7350.3910.9060.6720.3890.9050.6860.3750.8970.6480.4140.9150.7970.3950.3840.920.821[37][12][11]	MTT mAPGTZAN ROCNSynthp Acc0.4130.9170.8350.7930.3860.9040.7480.8190.4040.9140.7350.8920.3910.9060.6720.8050.3890.9050.6860.8240.3750.8970.6480.7770.3950.8800.3840.920.821-[37][12][11]-	MTT mAPGTZAN ROCNSynthp AccNSnythI Acc0.413 0.3860.917 0.9040.835 0.7480.793 0.8190.731 0.6760.404 0.3910.914 0.9060.735 0.6720.892 0.8050.740 0.7210.389 0.3750.905 0.8970.686 0.6480.824 0.7770.714 0.6980.414 0.3750.915 0.8970.797 0.648- 0.880- 0.7820.384 (37]0.92 (12]0.821 (11]- (43]	MTT mAPGTZAN ROCNSynthp AccNSnythI AccEmov r^2 0.4130.9170.8350.7930.7310.5660.3860.9040.7480.8190.6760.3410.4040.9140.7350.8920.7400.5770.3910.9060.6720.8050.7210.4380.3890.9050.6860.8240.7140.3890.3750.8970.6480.7770.6980.3860.3840.920.821-0.7410.556[37][12][11]-[43][44]	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

MSD50

KEY TAKE-AWAYS

- Supervised models achieve SotA on all multilabel tagging tasks
- Unsupervised models generalize better to novel tasks like pitch and key
- Music understanding models **perform better** when pretrained on purely music data

Musicset-ULarge Model Available Here:

https://github.com/PandoraMedia/ music-audio-representations

	Musicset Supervised
	Audioset Supervised
	Musicset ULarge
	Audioset ULarge
	Musicset USmall
	Audioset USmall
1	

Musicset Supervised
Audioset Supervised
Musicset ULarge
Audioset ULarge
Musicset USmall
Audioset USmall

