
• 7 Distinct Audio Collections

• 15 Datasets / Annotations

• Embeddings global-average 
pooled along track length.

• Probes consist of MLPs

• Probe hyperparameters 
optimized, respecting same 
restrictions as previous audio 
representation work
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• Provide a broad set of baselines for music 
understanding tasks

• Compare the effectiveness of supervised 
and unsupervised learning objectives at 
scale

• Investigate the impact of training dataset 
content and batch size for training 
unsupervised models

• Release a model to enable and accelerate 
downstream research in audio and / or 
multimodal understanding for music.
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    Datasets

• Musicset
○ 1.8M music tracks
○ 117k hours
○ 500 tags

• Audioset
○ 1.7M 10s snippets
○ 4.8k hours
○ 527 tags

PRETRAINING METHODOLOGY
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Loss: Binary CE
Batch Size: 512
Train Time: 30 hrs
Compute: 6xV100

ULarge/USmall
Loss: SimCLR
Batch Size: 1920/256 (pairs)
Training Time: 80hrs / 30hrs
Compute: 16xA100 / 8xV100
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Short Fast Normalizer 
Free Net (SF-NFNet-F0)

Musicset-ULarge 
Model Available Here:
https://github.com/PandoraMedia/
music-audio-representations

Evaluation Datasets

Sampling and 
Augmentation

KEY TAKE-AWAYS
• Supervised models achieve SotA on all 

multilabel tagging tasks
• Unsupervised models generalize better to 

novel tasks like pitch and key
• Music understanding models perform better 

when pretrained on purely music data


