Adapting Meter Tracking Models to Latin American Music

Lucas S. Maia¹, Martín Rocamora², Luiz W. P. Biscainho¹, Magdalena Fuentes³

¹ PEE/COPPE, Federal University of Rio de Janeiro, Brazil

² FING, Universidade de la República, Uruguay

³ MARL-IDM, New York University, United States

lucas.maia@smt.ufrj.br

Introduction	Datasets
t and downbeat tracking models based on temporal convolutional	Candombe dataset [3]:
Ausic with small quantities of data	 35 rec. of <i>candombe</i> drumming (2.5 h) 4/4 meter with syncopation
sic traditions—Uruguayan candombe and Brazilian samba	 chico, repique, and piano drums
es good performance in candombe and in samba with little data	 irregular rhythm cycle division
	Samba dataset (BRID) [4]:
	 93 short tracks, 30 s each (0.74 h)
	 2/4 meter

Goal: adapt state-of-the-art beat networks [1] to Latin American Mu

Target: two Latin American music

Hypothesis: TCN model achieves due to high genre homogeneity

Proposed analysis:

- train models with increasing amounts of annotated data (< 1 min up to ~40 min)
- use three training strategies (FS, FT, and data augmentation)
- contrast model performance against off-the-shelf models trained in/developed for Western music
- contrast model performance against an effective baseline, a Bayesian model (BayesBeat) [2]

Small Data

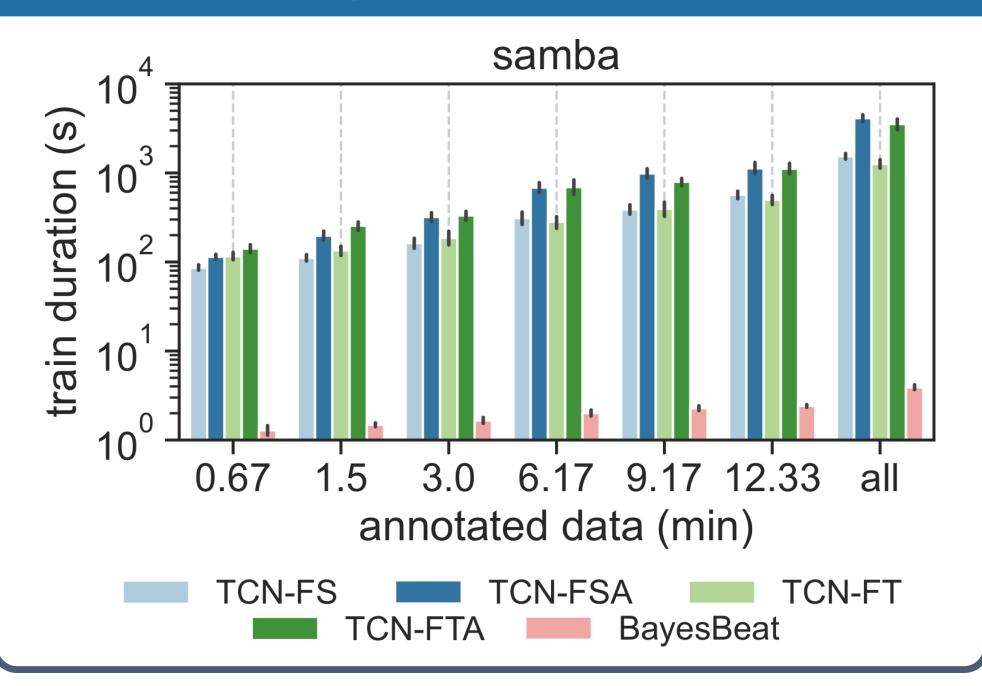
- Segment *Candombe* into 30-second snippets
- For both genres: select 93 excerpts, split in train / test (80% / 20%)
- **Train**: 10 s at the beginning of each excerpt (5 s train and 5 s validation)
- **Test**: full excerpts
- Use training subsets of increasing size:
 - 4, 9, 18, 37, 55, and 74 excerpts
 - Equivalently: 0.67, 1.5, 3, 6, 9, and 12 min
- For each subset, data is randomly selected ten times

Training Strategies

From scratch (FS):

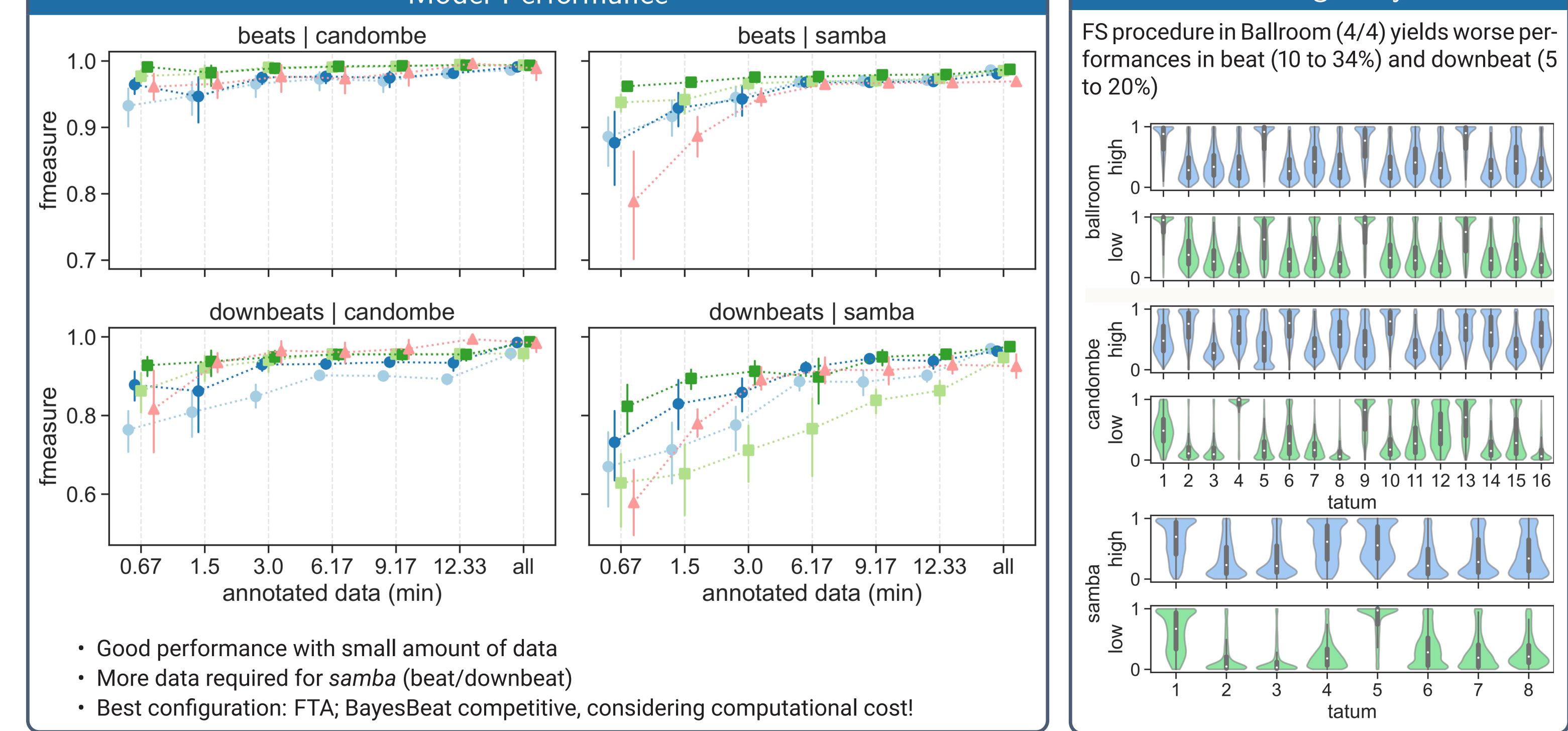
train model from scratch

Fine-tuning (FT):


- transfer learning from Western music
- Ballroom, Beatles, GTZAN, and RWC

Data Augmentation (FSA/FTA):

- artificially increase training data
- input STFT with varying hop sizes
- repeat strategies FS and FT


- ten different instrument classes: tamborim, pandeiro, surdo, cuíca, agogô, among others
- complex combination of timbres
- strong accent at second beat

Computational Cost

Homogeneity

Model Performance

Conclusion

We adapted a meter tracking model using small quantities of data to work in particular Latin American music traditions, samba and candombe. This seems to be possible only under homogeneity conditions.

Future work: investigate rhythm complexity metrics that could serve to predict the amount of annotated data needed to adapt meter tracking models to particular music genres.

References

- [1] S. Böck and M. E. P. Davies. Deconstruct, analyse, reconstruct: How to improve tempo, beat, and downbeat estimation. In Proc. 21st Int. Soc. Music Inf. Retrieval Conf. (ISMIR), pages 574–582, Montreal, Canada, October 2020.
- F. Krebs, S. Böck, and G. Widmer. Rhythmic pattern modelling for beat and downbeat tracking from musical audio. In |2| Proc. 14th Int. Soc. Music Inf. Retrieval Conf. (ISMIR), pages 227–232, Curitiba, Brazil, November 2013.
- Leonardo Nunes, Martín Rocamora, Luis Jure, and Luiz W. P. Biscainho. Beat and downbeat tracking based on rhythmic patterns applied to the Uruguayan candombe drumming. In Proc. of the 16th Int. Soc. for Music Information Retrieval Conf. (ISMIR 2015), pages 246-270, Málaga, Spain, October 2015.
- L. S. Maia, P. D. Tomaz Jr., M. Fuentes, M. Rocamora, L. W. P. Biscainho, M. V. M. Costa, and S. Cohen. A novel dataset [4] of Brazilian rhythmic instruments and some experiments in computational rhythm analysis. In Proc. 2018 AES Lat. Am. Congr. Audio Eng. (AES LAC), pages 53–60, Montevideo, Uruguay, September 2018.