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Motivations / Contributions
» Motivations: » Contributions:
* Singing voice beat tracking is useful for many applications in music v’ Introducing singing voice beat tracking as a novel MIR task

production, processing; analysis and interaction v' Proposing two strategies to create annotated datasets for this task

* Due to the lake of percussive components and strong harmonic content, v' New evaluation scheme that can account for phase ambiguities

current generic music beat tracking systems don’t work well for singing v’ Proposing two neural models for the task leveraging pre-trained speech self-

voice beat tracking
supervised models and linear transformers

Proposed Approach to Create Annotated Data Proposed Neural Network Structures
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RWC Royalty free * 0 19 m Figure 2. Neural network structures of the proposed models. (I) utilizes a weighted sum o

layers of pre-trained WavLM self-supervised speech model to calculate the feature embeddings.
(II) uses the outputs of the DistilHuBERT teacher student model and (III) employs the
spectrogram representations that are used in conventional beat tracking methods as input feature
representations. All models take advantage of the same self-attention network to fine-tune them
for the task.
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Table 1. Datasets collected and adapted for singing beat
tracking. * denotes beat tracking datasets and T denotes
music separation datasets.

Evaluation
Method F-Measure P-Score  Cemgil Goto  Comp. Time = | :
BeatNet [4] (.24 3 0.327 0.173  0.003 0.13 (s) 0.8k -
Baseline BeatRoot [6] 0.301 0.394 0.22 0.066 0.03 (s)
Bock 7] 0.171 0.195 0.122  0.009 1.56 (s) 2 0.6] -
WavLM + LT 0.733 0.704 0.618  0.560 4.09 (s) g | :
Proposed  DistilHUBERT + LT 0.703 0.668 0593 0516  1.83(s) =4 E
Spectrogram + LT 0.454 0.438 0.367  0.223 0.32 (s) 0o
Proposed | WHVLM, + L1 0.7435 0.7135 0.627  0.574 4‘f]9 (S)
(PI Results) DisulHuBERT + LT 0.721 (.684 U.f)ﬂﬂ (0.537 .83 (s) 0 5 & .
Spectrogram + LT 0.489 0.477 0.391  0.265 0.32 (s) Q¥ Q@@ F & Qfﬁ 5
Table 2. Average performance and speed across segments of several methods on the GTZAN separated vocal tracks, Figure 3. F-measure performance of
including baselines and the proposed models and the Phase Inclusive (PI) evaluation for the proposed models. WavLM + LT model on the GTZAN

separated vocal tracks for different genres.
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