Contrastive learning models based on editorial metadata from Discogs

Pablo Alonso-Jiménez, Xavier Serra, Dmitry Boqdanov

Music Technology Group, Universitat Pompeu Fabra

BENGALURU

Motivation

Descriptive tags are **difficult to obtain** and **noisy**. We need alternative ways of generating training targets for large music collections and suitable training approaches to

Downstream evaluation

We consider several music classification datasets.

Dataset	# tracks	Classes	Туре		
MTG-Jamendo Genre	55,215 ft	87	multi-label		

develop music representation models.

Discogs metadata

Dengue Dengue Dengue! – Serpiente Dorada nchufada - ENDG049 Label 6 x File, MP3, EP, 320 kbps lar 17, 2014 lectronic, Regga Dancehall, Ragga, Zouk

Tracklist

Banana	4:23
Serpiente Dorada	3:09
Rama	4:00
Booom	2:47
Bugutu	5:17
Senen Pani	4:23
	Serpiente Dorada Rama Booom Bugutu

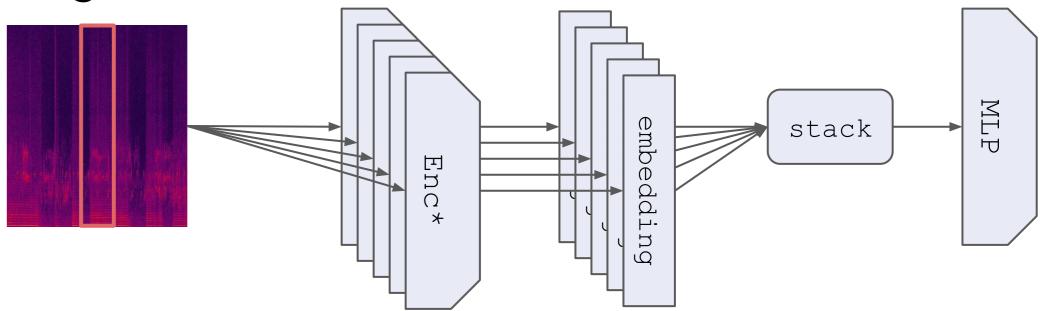
Other Versions (2) View All

Title (Format)	Label	Cat#	Country	Year
Serpiente Dorada (12", 33 1/3 RPM, EP, Reissue, Stereo)	Enchufada	ENLP049	Portugal	2021

Discogs is an **extensive** community-maintained database of music metadata released under **CC0 license**. We matched 3.3M tracks tracks to Discogs metadata: 2M releases (e.g., albums) ✤ 142K record labels ✤ 257K artists ✤ 400 style tags

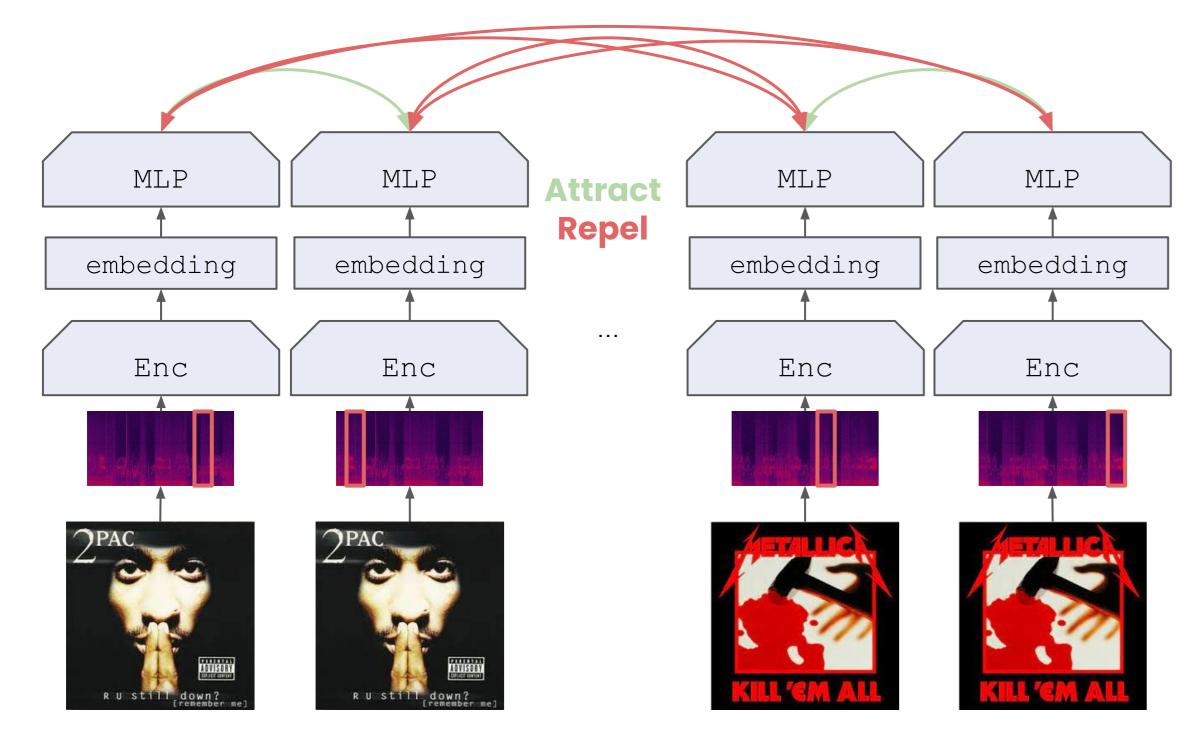
nulti-label
nulti-label
nulti-label
nulti-label
ingle label

We evaluate the pre-trained models as frozen embedding extractors by training MLP classifiers. We also considered training classifiers on stacks of embeddings to assess the complementarity of the embeddings.



The classifiers are evaluated with the **ROC-AUC** and **PR-AUC** metrics. Additionally we report the performance of SOTA model from the literature and embeddings from random weights, a model trained on style tags, and the VGGish model [4].

Contrastive learning pre-training



- We target editorial metadata associations similar to previous works on metric learning [1].
- We use a contrastive approach approach based on ** **COLA** [2] with an **EfficientNet** architecture [3].
- The considered models are:

	Ger ROC	nre PR	Instru ROC	ment PR	Mo ROC	od PR	Top ROC	o50 PR	M7 ROC	TAT PR	FMA Acc.
Lileonardo	-	-	-	-	77.5	15.1	-	-	-	-	-
Harmoic CNN	-	-	-	-	-	-	83.2	29.8	*91.3	*45.9	-
MusiCNN	-	-	-	-	-	_	-	-	90.7	38.4	-
MuLaP	85.9	-	76.8	-	76.1	-	82.8	-	*89.3	*40.2	61.1
CALM	-	-	-	-	-	-	-	-	91.5	41.4	-
Random weights	50.7	3.1	49.9	6.4	50.4	3.4	48.3	6.5	50.0	5.3	12.5
Style tags	87.7	19.9	77.6	19.8	75.6	13.6	83.1	29.7	90.2	37.4	59.1
VGGish	86.3	17.2	77.8	20.2	76.3	14.1	83.2	28.2	90.2	37.2	53.0
Track associations	86.3	18.0	69.9	16.7	74.0	12.8	82.9	29.4	89.7	36.4	58.9
Release associations	86.9	18.9	71.9	17.2	72.8	11.7	83.2	29.8	90.3	37.1	60.9
Artist associations	87.7	20.3	69.7	16.9	76.3	14.3	83.6	30.6	90.7	38.0	59.1
Label associations	87.0	19.4	75.0	18.2	74.8	12.8	83.1	29.9	88.7	34.2	59.5
Stack	86.9	19.4	74.7	18.8	74.3	13.0	83.4	30.0	90.8	38.6	59.8
Multi-task	87.2	19.9	70.5	17.2	76.1	14.4	83.5	30.3	90.8	37.8	60.0

Conclusions

- Artist associations produce the best embeddings.
- The features are **complementary** and stacking them is beneficial in some cases.
- Some metadata-based embeddings are superior to
- Track associations: attract two fragments from the same song.
- **Release associations:** attract two songs from the same release.
- Artist associations: attract two songs from the same artist.
- Label associations: attract two songs from the same label. Ο
- Multi-task: Jointly learn the track and artist objectives. Ο

models obtained from **classification**.

Proposed models are publicly available: https://essentia.upf.edu/models.html

Contact: <u>pablo.alonso@upf.edu</u> @pablo alonso

Park, J. Lee, J.W. Ha, and J. Nam. "Representation learning of music using artist label.," in Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR). 2018. [1]

- Saeed, Aaqib, Grangier, David, and Zeghidour, Neil. "Contrastive learning of general-purpose audio representations." IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2021. [2]
- Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." International Conference on Machine Learning (ICML). 2019. [3]
- Hershey, Shawn, et al. "CNN architectures for large-scale audio classification." International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2017. [4]

This research was carried out under the project Musical AI - PID2019-111403GB-100/AEI/10.13039/501100011033, funded by the Spanish Ministerio de Ciencia e Innovación and the Agencia Estatal de Investigación.

