
Music Representation Learning Based on Editorial Metadata From Discogs

Motivation

Discogs metadata

Descriptive tags are difficult to obtain and noisy. We need 
alternative ways of generating training targets for large 
music collections and suitable training approaches to 
develop music representation models.

Discogs is an extensive community-maintained database 
of music metadata released under CC0 license. 
We matched 3.3M tracks tracks to Discogs metadata:
❖ 2M releases (e.g., albums)
❖ 257K artists
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Contrastive learning pre-training

❖ We target editorial metadata associations similar to 
previous works on metric learning [1].

❖ We use a contrastive approach approach based on 
COLA [2] with an EfficientNet architecture [3].

❖  The considered models are:
○ Track associations: attract two fragments from the same song.

○ Release associations: attract two songs from the same release.

○ Artist associations: attract two songs from the same artist.

○ Label associations: attract two songs from the same label.

○ Multi-task: Jointly learn the track and artist objectives.
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Conclusions
❖ Artist associations produce the best embeddings.
❖ The features are complementary and stacking 

them is beneficial in some cases.
❖ Some metadata-based embeddings are superior to 

models obtained from classification.

Downstream evaluation

❖ 142K record labels
❖ 400 style tags
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We consider several music classification datasets.

Dataset # tracks Classes Type
MTG-Jamendo Genre 55,215 ft 87 multi-label
MTG-Jamendo Instrument 25,135 ft 40 multi-label
MTG-Jamendo Moods 18,486 ft 56 multi-label
MTG-Jamendo Top 50 tags 54,380 ft 50 multi-label
MagnaTagATune 25,860 exc 50 multi-label
FMA small 8,000 exc 8 single label
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We evaluate the pre-trained models as frozen 
embedding extractors by training MLP classifiers.
We also considered training classifiers on stacks of 
embeddings to assess the complementarity of the 
embeddings.
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The classifiers are evaluated with the ROC-AUC and 
PR-AUC metrics. Additionally we report the performance 
of SOTA model from the literature and embeddings from 
random weights, a model trained on style tags, and the 
VGGish model [4].

Proposed models are publicly available:
https://essentia.upf.edu/models.html
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