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Motivation Downstream evaluation
Descriptive tags are difficult to obtain and noisy. We need We consider several music classification datasets.
alternative ways of generating training targets for large
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Discogs Is an extensive community-maintained database =y e
of music metadata released under CCO license. The classifiers are evaluated with the ROC-AUC and
We matched 3.3M tracks tracks to Discogs metadata: PR-AUC metrics. Additionally we report the performance
+ 2M releases (e.g, albums) < 142K record labels of SOTA model from the literature and embeddings from
< 25/K artists < 400 style tags random weights, a model trained on style tags, and the
. . o VGGish model [4].
Contrastive learning pre-training
Genre Instrument Mood TopS0 MTAT FMA

ROC PR ROC PR ROC PR ROC PR ROC PR Acc.
//X\ Lileonardo - . . - 775 151 . - - - -
Harmoic CNN - - - - - - 83.2 29.8 *91.3 *459 -

( MLP w ( ML P w ( ML P w ( ML, P w MusiCNN - - - - - - - - 90.7 38.4

Artist associations 877 203 69.7 169 763 143 83.6 30.6 90.7 38.0 59.1
Label associations 870 194 750 182 748 128 83.1 299 88.7 34.2 59.5
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4 Enc N( Enc h 4 e N e A Style tags 877 199 776 198 756 136 831 297 902 374 59.1
I VGGish 863 17.2 778 202 763 141 832 282 902 372 530
- - - - Track associations 86.3 180 699 167 740 128 829 294 89.7 364 589
{ ! } $ Release associations 869 189 719 172 728 11.7 832 298 903 37.1 609

Stack 869 194 747 188 743 130 834 300 90.8 38.6 59.8
Multi-task 872 199 705 172 76.1 144 835 303 908 37.8 60.0
< We target editorial metadata associations similar to Conclusions
previous works on metric learning [1]. % Artist associations produce the best embeddings.
< We use a contrastive approach approach based on % The features are complementary and stacking
COLA [2] with an EfficientNet architecture [3]. them is beneficial in some cases.
< The considered models are: % Some metadata-based embeddings are superior to
o Track associations: attract two fragments from the same song. models obtained from classification.
o Release associations: attract two songs from the same release.
o Artist associations: attract two songs from the same artist. PFOPOSed models are pUb"CIY available:
o Label associations: attract two songs from the same label. mww
o Multi-task: Jointly learn the track and artist objectives. Contact: 5% pablo.alonso@upf.edu w @pablo__alonso
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