A reliable AFP dataset with real (BENGALURU BENGALURU broadcasts and production music

BAF: An Audio Fingerprinting Dataset for Broadcast Monitoring

Guillem Cortès 🕻 Alex Ciurana 🖌 Emilio Molina de Marius Miron de Owen Meyers de Joren Six de Xavier Serra de BMAT Licensing S.L. MTG, Universitat Pompeu Fabra [#]Epidemic Sound ^b IPEM, Ghent University

1. Problem context

Identify music in a broadcast stream giving exact start and end matching times. Music has a variable SNR and is usually in background with speech and SFXs on top.

Song B

Song A

2. BAF Dataset

- The only publicly available broadcast monitoring dataset.
- Self-contained dataset, open for non-commercial research.
- Background music with variable SNR.
- Low sample rate, monaural audio.
 - ✤ 74 hours production music tracks from Epidemic Sound catalogue (2,000 entries).
 - ✤ 57 hours of 1-minute TV recordings (3,425 entries) from 203 TV channels across 23 countries.
 - +37 hours of matched query-reference.
 - Cross-annotated exact matching times by 6 annotators with high reliability annotation: >0.93 Fleiss' Kappa factor.

3. Proposed baseline: PeakFP

- Slow, simple, no-scalable, no-optimized AFP baseline. No usable on an industrial scale. Single-peak matching.
- **Extraction & Indexing**

20% 30% 40% 50% Window peaks for all windows

collision of matches. High computational cost.

4. Benchmark

Algorithm	Match Ratio*	# matches		seconds			A la crith no	Extraction &	Matchina	Inday Circ
		Prec.	GT Rec.	Prec.	Rec.	F1	Algorithm	Indexing	Matching	index Size
PeakFP (baseline)	1.64	.96	.72	.96	.32	.47	Olaf [2]	53m	3h 30m	349 ME
Panako2.0 [1]	1.85	.98	.21	.98	.06	.12	Panako 2.0 [1]	2h 17m	5h 24m	273 ME
Panako2.0 (x1.5) [1]	2.12	.70	.41	.69	.15	.25	NeuralFP [3]	49h 34m	9h 30m	37 ME
Olaf [2]	1.95	.98	.14	.98	.06	.11	Audfprint [4]	9h 50m	23h 01m	19 ME
NeuralFP [3]	1.39	.22	.23	.37	.10	.15	PeakFP (baseline)	50m	98h 39m	160 ME
NeuralFP-spcm1510 [3]	1.56	.23	.45	.38	.22	.28	* Benchmarked in a 98GB RAM server with two 16-cores CPUs at 2.6GHz			
NeuralFP-spc3000 [3]	1.40	.69	.31	.83	.13	.22	 NeuralFP extraction is the slowest due to neural model complexity. It can be optimized with a GPU. PeakEP single peak matching produces a high 			
Audfprint [4]	N/A∆	.76	.05	.86	.02	.04				
Audfprint (x2) [4]	N/A∆	.71	.10	.81	.04	.08				
				•			* FEARER SINGLE	ρεακπιαισιπηί	j produces d	Ingn

* Match Ratio = # TP segments identified / # TP segments Groundtruth

△ Not Applicable. Audfprint reports only 1 match per query.

Dataset is not challenging to False Positives, hence the high Precision results. **

Low Recall values indicate that algorithms have not been studied to work with background music. •••

- Recall in seconds decreases because identifications are partial and don't cover the full annotation groundtruth. **
- Precision increases in seconds identified since False Positives are shorter in time than True Positives. **
- Increasing FP density (Panako, Audfprint) boosts Recall at expense of Precision. **

Audio Fingerprinting is not solved for Broadcast Monitoring

- Six, J., & Leman, M. (2014). Panako: a scalable acoustic fingerprinting system handling time-scale and pitch modification. In 15th International Society for Music Information Retrieval Conference (ISMIR-2014). [1]
- Six, J. (2020). Olaf: Overly lightweight acoustic fingerprinting. Late-Breaking Demo In 21st International Society for Music Information Retrieval Conference (LBD ISMIR 2020). [2]
- Chang, S., Lee, D., Park, J., Lim, H., Lee, K., Ko, K., & Han, Y. (2021). Neural audio fingerprint for high-specific audio retrieval based on contrastive learning. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-2021) [3]
- is, D. (2014). The 2014 labrosa audio fingerprint system. In 15th International Society for Music Information Retrieval Conference (ISMIR-2014).

La Agencia Estatal de Investigación del Ministerio de Ciencia e Innovación (The Research National Agency of the Ministry of Science and Innovation) supports the call Retos-Colaboración 2019, project NextCore - New generation of music monitoring technology, RTC2019-007248-7. Also, with the support of Industrial Doctorates plan from Secretaria d'universitats i Recerca, Departament d'Empresa i Coneixement de la Generalitat de Catalunya. DI46-2020.

Paper #228