MuLan: A Joint Embedding of <u>Mu</u>sic Audio and Natural Language

ABSTRACT

This paper presents MuLan: a first attempt at a new generation of acoustic models that link music audio directly to unconstrained natural language music descriptions. MuLan takes the form of a two-tower, joint audio-text embedding model trained using 44 million music recordings (370K hours) and weakly-associated, free-form text annotations. Through its compatibility with a wide range of music genres and text styles (including conventional music tags), the resulting audio-text representation subsumes existing ontologies while graduating to true zero-shot functionalities. We demonstrate the versatility of the MuLan embeddings with a range of experiments including transfer learning, zero-shot music tagging, language understanding in the music domain, and cross-modal retrieval applications.

RESULTS

Google

MUSIC TAGGING

- Eval sets (not included in training data)
 - Music splits of AudioSet; MagnaTagATune
- Zero-shot tagging
- Score(track, text label) = Cosine similarity(audio emb, text emb)

INTRODUCTION

• Goal

• Build a new audio foundation model that provides a natural language interface to support arbitrary music tagging and retrieval tasks

• The Strategy

• Following success of image-text representation pretraining models (e.g. CLIP, ALIGN), we train a joint embedding of music audio and natural language using a very large collection of associated audio-text pairs mined from the internet

LEARNING FRAMEWORK

• For each track, rank the scores for all labels

• Linear probe

• Train linear classifiers using frozen audio embeddings as inputs

• Result

	Aua	AudioSet		
Model	Gen-25	Mu-141	Top-50	All-188
(a) Zero-shot (Trained w/ ASET + SF + LF + PL)				
M-AST	0.840	0.909	0.778	0.776
M-Resnet-50	0.840	0.899	0.782	0.772
(b) Text ablation (u	using M-Re	esnet-50 Ze	ro-shot)	
ASET + SF + LF	0.839	0.907	0.760	0.756
ASET + SF	0.839	0.885	0.754	0.747
ASET	0.886	0.942	0.753	0.771
SF/LF Unfiltered	0.845	0.908	0.774	0.766
(c) Linear probe				
M-AST	0.906	0.942	0.925	0.953
M-Resnet-50	0.910	0.940	0.927	0.954
Baselines:				
Hybrid [25]	0.904	0.920	0.915	0.941
JukeBox [15, 23]	-	-	0.915*	-
MuLaP [32]	-	-	0.893*	-
CLMR [22]	-	-	0.866^{*}	-
(d) End-to-end training baselines				
AST [10]	0.888	0.949	-	-
SC-CNN [42]	-	-	0.913*	-
* indicates that the number is brought from the original paper				

indicates that the number is brought from the origin

TEXT TO MUSIC RETRIEVAL

• Loss Function

 $\sum_{i=1}^{D} -\log \left| \frac{h[f(\mathbf{x}^{(i)}), g(\mathbf{t}^{(i)})]}{\sum_{i \neq i} h[f(\mathbf{x}^{(i)}), g(\mathbf{t}^{(j)})] + h[f(\mathbf{x}^{(j)}), g(\mathbf{t}^{(i)})]} \right|$

- Audio Embedding Model Architecture
 - Input: log-mel spectrogram of 10 second music clip
 - Encoder: Resnet-50, AudioSpectrogramTransformer
 - Output: 128-dimensional embedding
- Text Embedding Model Architecture
 - Warmstart from public BERT-base-uncased encoder

TRAINING DATA

- Music audio: 370K hours of music videos
- Music descriptive text: Short-form and long-form labels. Optionally

Method

Score(track, query) = Cosine similarity(audio emb, query emb) For each query, rank the scores of all candidate tracks

- Eval set 7K expert-curated playlists of a total 100K songs (not included) in training data). Queries are playlist titles/descriptions, target audio are songs contained in the playlist.
- Result
- Table 5. Text query music retrieval evaluation results. Text
 ablation/unfiltered models use M-Resnet-50.

	Title		Description	
Model	AUC	mAP	AUC	mAP
M-AST	0.933	0.110	0.903	0.090
M-Resnet-50	0.931	0.104	0.901	0.084
Text Ablation:				
ASET+SF+LF	0.917	0.101	0.892	0.077
ASET+SF	0.913	0.089	0.867	0.060
ASET	0.626	0.005	0.688	0.009
SF/LF Unfiltered	0.933	0.111	0.897	0.081

TEXT TO TEXT RETRIEVAL

- Method Evaluate the text embeddings on a triplet classification task
- **Eval set** We use both the AudioSet ontology and Playlist titles/descriptions to sample such triplets.

filtered to music related text

• Examples

 Table 1. Text annotation examples.

Туре	Examples
Short-form (SF)	tags like genre, mood, instrument, artist name,
	song title, album name
Long-form (LF)	'Hip-hop features rap with an electronic backing.'
	'The melody is so nostalgic and unforgettable.'
Playlist (PL)	'Feel-good mandopop indie', 'Latin workout'
	'Salsa for broken hearts', 'Piano for study'

• Statistics

Table 2. Statistics for text data sources. Tokens counts (in billions) are across all 44M videos. APV is the average number of text annotations (i.e. separate free-form strings) per video, including those with none.

	Pre-filter		Post-filter	
Туре	Tokens (B)	APV	Tokens (B)	APV
Short-form	31.2	42.9	5.4	29.6
Long-form	30.7	70.7	0.2	0.4
Playlists	-	-	2.5	24.3

• Examples

Eval Set

Ontology

Playlist

Anchor / Positive / Negative

Result

 Table 6. Text triplet classification accuracy AudioSet on tology evaluation and Playlist title to description evaluation. Text ablation/unfiltered models use M-Resnet-50.

Anchor / Positive / Negative	Model	Plavlist	AudioSet
Steelpan / Sounds of a tuned percussion instru-	MAST	0.050	0.062
ment originally constructed from steel oil drums	M-ASI	0.959	0.902
by hammering out small patches on the head to	M-Resnet-50	0.945	0.951
produce separate pitches. / The sound of a musi-	Text Ablation:		
of air in a tubular resonator in sympathy with the	ASET + SF + LF	0.935	0.952
vibration of the player's lips.	ASET + SF	0.910	0.938
Relaxing Korean Pop / Lets make your chill	ASET	0.693	0.818
from Korean artists. / These fun and upbeat	SF/LF Unfiltered	0.949	0.959
songs from the alternative side of the pop mu-	Baselines:		
sic spectrum will keep you energized while you	SimCSE [45]	0.950	0.938
exercise.	SBERT [46]	0.942	0.889
	USE [47]	0.918	0.946
	BERT [38]	0.850	0.847