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We have created an audio dataset containing pieces that are
composed of two instruments, and are performed with two

(Ppiano = Pvibraphone)
domains: Strings-Piano and Clarinet-Vibraphone.

Evaluation
Every piece in the dataset is represented by both mixtures and

their corresponding stems. Subjective and objective evaluations compare the
re-instrumentation methods on three criteria:

e Content preservation

Methodology e Style fit
e Audio quality

Ranking of methods provided by subjective evaluation

We present several baseline solutions and then propose

Music-STAR, which is built upon the WaveNet autoencoder: | | | |
Content Preservation Style Fit Audio Quality

e Single-instrument Translation Pipeline applies an “ y - .
existing single-instrument translation model, the universal E . - l —
translation network, to the pre-existing stems and mixing
the outputs.
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The universal translation network is trained as a denoising autoencoder using

. Summary of method scores based on subjective rankings and objective metrics
teacher forcing

Method Subjective Objective
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e Separation-based Translation Pipeline applies (Jaccard)  (Cosine)
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an encoder to generate the same embeddings as the
universal encoder for every instrument present in an audio
mix separately: Music-STAR tackles multi-instrument translation without
Prewainedmodel applying explicit source separation to the input mixtures. We
‘: explored a variety of possible solutions based on the WaveNet
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