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Task A (CEG): De-Overdrive Guitar

Task B (CEG): Declip Guitar

Task C (SignalTrain): Declip Audio

Research question: Can distortion ef-
fect removal be solved by DNNs de-
signed for music source separation?

Application: Removing audio effects 
in music tracks is a meaningful step 
toward developing an automated re-
mixing system.

Distortion Audio Effects
Hard-clipping Simplified model; limits the amplitude when it exceeds a defined 

threshold (as typical for saturation in digital signal processing)

Soft-clipping Signal saturates gradually before reaching the fully saturated 
state (as typical for saturation in analog amplifiers)

SoX overdrive [1] One example of a more complex distortion algorithm; mixes the 
wet and the dry signal
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Consequence: Introduction of harmonics and intermodulation distortion

Data
Clean Electric 
Guitar (CEG) Polyphonic clean electric guitar samples collected from loop packages and YouTube, ~1.7h

SignalTrain [7] Various musical audio content mixed with synthetic audio (e.g., sweeps, noise), ~24h

Processing: SoX overdrive [1] on (Task A (CEG)) and hard-clipping (Task B (CEG)/C (SignalTrain)) 
 with uniformly sampled gain levels in the range of [20, 50] dB.

 

Methods
Demucs V2* [2] Originally proposed for source separation; autoencoder architecture composed of a convolutional 

encoder, a BLSTM, and a convolutional decoder, linked with skip connections

Wave-U-Net* [3] Originally proposed for source separation; U-Net for raw audio

CRAFx [4] Originally proposed for audio effect modelling; autoencoder architecture composed of a learna-
ble filterbank, a BLSTM, and learnable nonlinearities

Open Unmix (UMX) [5] Originally proposed for source separation; BLSTM that operates on STFT magnitude input fea-
tures; applies a learned magnitude mask to the input; reuses original phase for reconstruction

A-SPADE [6] Sparsity-based iterative algorithm; serves as a state-of-the-art baseline

* Number of layers reduced
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Conclusion
•	 Distortion effect removal can be efficiently 

solved with DNNs designed for source se-
paration, especially when the distortion al-
gorithm to be removed blends the distor-
ted sound with the original one

•	 The metrics under evaluation prove benefi-
cial for evaluating effect removal systems

•	 Future work: simulate more realistic effects 
on larger dataset (e.g., use Pedalboard [8])

Example from test set:


