
Hearing-Inspired AI Models 
Perform Better At Representing Music

We propose a novel 
architecture that outperforms 
self-supervised models and 
performs competitively 
compared to supervised 
models on downstream tasks.

   Additional Information       
● Common representation learning architectures do not explicitly combine 

multi-scale features.
● U-Net architectures (Ronneberger et al., 2015) combine multi-scale features 

but the output is the size of the input (RI×C) instead of representation size (RR).

Our architecture, which we call Tailed U-Net (TUNe), consists of three sections 
which can be easily shortened or lengthened: 

● the contractive path extracts features at different scales;
● the expansive path combines features of different scales; 
● the tail path maps the enriched signal to a latent space; and
● (for TUNe+) extra connections between the expansive and tail paths.

● At 10,000 epochs trained both TUNe variants outperform CLMR.

   A.  Architecture variant results for MTT training and probing

   B.  Training method and data

● For all three dataset both TUNe variants perform significantly better.

● The training method we used was CLMR (Spijkervet & Burgoyne, 2021).

● The datasets we used were:
○ MagnaTagATune Dataset (Law et al., 2009);
○ Free Music Archive (Defferrard, 2017); 
○ GTZAN (Sturm, 2013); and
○ McGill Billboard (Burgoyne et al., 2011). 
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