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Introduction

Audio fingerprinting applications include music recognition,
broadcast monitoring, second screen applications and etc.

e Conventional audio fingerprinting systems rely on handicraft audio
features, failing to deliver accurate results at high noise and
reverberation levels.

e A well-known Shazam' method find spectral peaks in spectrograms
as robust features and further transforms them into hash codes to
expedite search.

e An ideal audio fingerprinting system must generate robust and
compact fingerprints in computationally efficient manner to be
scalable.

Contributions

We deploy deep learning (CNN) to compute compact and robust
audio fingerprints.

e We explore contrastive learning framework by creating pairs of
clean audio segments and its corresponding distorted version.

e |[nspired by Shazam method, we attempt to locate the salient
peaks/patches in the CNN features using the proposed the
spectral-temporal attention mechanism.

e Spectral-temporal attentions provides discriminative  audio

fingerprints.
e \We devise our own custom resnet-like CNIN architecture.

e \We propose a simple yet effective subsequence search to precisely
locate query timestamp.

Approach

e We design custom resnet-like CNN architecture.

e [t consists of front-end and back-end. The Front-end consists of a
CNN block with no subsampling in the spectral-temporal axis, and
backend consists of sequentially stacked resnet blocks enhanced
with spectral-temporal attention.

Layer Input size  Output size
Encoder:

CNN layer I x64x96  32x64x96
ResBlockl 32xX64x96 32x64x%x96
ResBlock? 32x64x96 64x32x48
ResBlock6 512x4x6  1024%x2x3
Flatten 6144
Projection Head: d* 1 d*o
ConvlD + ELU 128 x48 128 x32
ConvlD 128 %32 128 %1

Experiments and Results

Database: Free Music Archival (FMA)
e Distortions: Noise, Reverberation and time offset.
e Evaluation Metric:
o Recall @ audio-level: Coarse search
o Recall @ segment-level: Fine-grain search, ie. located timestamp
within +- 50 ms.
e Baselines: MIPS? and Audfprint’
e |ndexing algorithm: Locality Sensitive Hashing (LSH)
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e Contrastive loss:
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e Spectral-Temporal Attention:
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Method le%;f}f(ys) 0dB  5dB  10dB  15dB
Ours - 603 766 813 828
MIPS 273 587 707 739
Ours . 664 835 869  88.0
MIPS 390 696 765 787
Ours . 679 851 882 893
MIPS 471 752 802 814
Ours ; 69.5 87.1 905 919
MIPS 547 773 818 828
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Figure 1: Spectral-Temporal Attention mechanism

e Subsequence Search:

o Generate multiple sequence candidates C, with their starting
indice as | =/ _-m, where |/ is the retrieved index at m™ position.

o Select | (time offset) with maximum agreement among candidates.
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Figure 2: Subsequence search

Table 1. Top-1 hit rate (%) performance in the segment-
level search for varying query lengths in noisy reverberant

conditions.
Distortion Method 0dB 5dB 10dB 15dB
_ Ours 95.0 98.7 98.9 99.2
Noise
Audfprint | 72.1 82.7 89.4 91.2
Noise+ Ours 34.3 96.8 98.5 98.9
Reverb | Audfprint | 64.8 794 872 923
0.2s 04s 0.5s 0.7s 0.8s
Ours 99.2 995 98.9 99.6 98.7
Reverb
Audfprint | 96.1 946 81.8 89.6 40.2

Table 2. Top-1 hit rate (%) performance in the audio-level
search in different distortion conditions.
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