

Attention based Audio Embeddings

for Query-by-Example

Anup Singh^{1,2}, Kris Demunynck¹, Vipul Arora² ¹Ghent University, ²Indian Institute of Technology-Kanpur

Introduction

- Audio fingerprinting applications include music recognition, broadcast monitoring, second screen applications and etc.
- Conventional audio fingerprinting systems rely on handicraft audio features, failing to deliver accurate results at high noise and reverberation levels.
- A well-known Shazam¹ method find spectral peaks in spectrograms as robust features and further transforms them into hash codes to expedite search.
- An ideal audio fingerprinting system must generate robust and

Feature Encoder

- We design custom resnet-like CNN architecture.
- It consists of front-end and back-end. The Front-end consists of a CNN block with no subsampling in the spectral-temporal axis, and backend consists of sequentially stacked resnet blocks enhanced with spectral-temporal attention.

Layer	Input size	Output size
Encoder:		
CNN layer	$1 \times 64 \times 96$	$32 \times 64 \times 96$
ResBlock1	$32 \times 64 \times 96$	32×64×96

compact fingerprints in computationally efficient manner to be scalable.

Contributions

- We deploy deep learning (CNN) to compute compact and robust audio fingerprints.
- We explore contrastive learning framework by creating pairs of clean audio segments and its corresponding distorted version.
- Inspired by Shazam method, we attempt to locate the salient peaks/patches in the CNN features using the proposed the spectral-temporal attention mechanism.
- Spectral-temporal attentions provides discriminative audio fingerprints.
- We devise our own custom resnet-like CNN architecture.
- We propose a simple yet effective subsequence search to precisely locate query timestamp.

ResBlock2	32×64×96	$64 \times 32 \times 48$
 ResBlock6 Flatten	512×4×6	1024×2×3 6144
Projection Head:	d*i	d * o
Conv1D + ELU	128×48	128×32
Conv1D	128×32	128×1

Experiments and Results

- Database: Free Music Archival (FMA)
- Distortions: Noise, Reverberation and time offset.
- Evaluation Metric:
 - Recall @ audio-level: Coarse search
 - Recall @ segment-level: Fine-grain search, ie. located timestamp within +- 50 ms.
- Baselines: MIPS² and Audfprint³
- Indexing algorithm: Locality Sensitive Hashing (LSH)

Onomi

Approach

• Contrastive loss:

$$\mathcal{L}_c = -\log rac{e^{(\mathcal{F}_{ heta}(x) \cdot \mathcal{F}_{ heta}(x^+))/ au}}{e^{(\mathcal{F}_{ heta}(x) \cdot \mathcal{F}_{ heta}(x^+))/ au} + \sum_{x^-} e^{(\mathcal{F}_{ heta}(x) \cdot \mathcal{F}_{ heta}(x^-))/ au}}$$

• Spectral-Temporal Attention: $a^{temp} = \operatorname{softmax}(X^T W_{temp})$ $a^{spect} = \operatorname{softmax}(X^T W_{spect})$ $A = a^{spect} \otimes a^{temp} \times S$ X' = A * X

Figure 1: Spectral-Temporal Attention mechanism

• Subsequence Search:

- Generate multiple sequence candidates C_i with their starting indice as $I_i = I_m m$, where I_m is the retrieved index at m^{th} position.
- \circ Select I, (time offset) with maximum agreement among candidates.

Method	length(s)	0dB	5dB	10dB	15dB
Ours	0.96	60.3	76.6	81.3	82.8
MIPS	0.90	27.3	58.7	70.7	73.9
Ours	2	66.4	83.5	86.9	88.0
MIPS	2	39.0	69.6	76.5	78.7
Ours	3	67.9	85.1	88.2	89.3
MIPS	5	47.1	75.2	80.2	81.4
Ours	5	69.5	87.1	90.5	91.9
MIPS	5	54.7	77.3	81.8	82.8

Table 1. Top-1 hit rate (%) performance in the segmentlevel search for varying query lengths in noisy reverberant conditions.

Distortion	Method	0dB	5dB 10)dB	15dB
Noise	Ours	95.0	98.7	79	8.9	99.2
	Audfprint	72.1	82.7	7 8	9.4	91.2
Noise+ Reverb	Ours	84.3	96.8	89	8.5	98.9
	Audfprint	64.8	79.4	4 8	7.2	92.3
		0.2s	0.4s	0.5s	0.7s	0.8s
Reverb	Ours	99.2	99.5	98.9	99.6	98.7
	Audfprint	96.1	94.6	81.8	89.6	40.2

Table 2. Top-1 hit rate (%) performance in the audio-level search in different distortion conditions.

- 1. A. Wang, "The shazam music recognition service," Communications of the ACM, vol. 49, no. 8, pp. 44–48, 2006.
- S. Chang, D. Lee, J. Park, H. Lim, K. Lee, K. Ko, and Y. Han, "Neural audio fingerprint for high-specific audio retrieval based on contrastive learning," in ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021, pp. 3025–3029.
- 3. https://github.com/dpwe/audfprint