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Introduction
● Audio fingerprinting applications include music recognition, 

broadcast monitoring, second screen applications and etc. 

● Conventional audio fingerprinting systems rely on  handicraft audio 
features, failing to deliver accurate results at high noise and 
reverberation levels.

● A well-known Shazam1 method find spectral peaks in spectrograms 
as robust features and further transforms them into hash codes to 
expedite search. 

● An ideal audio fingerprinting system must generate robust and 
compact fingerprints in computationally efficient manner to be 
scalable. 

Contributions
● We deploy deep learning (CNN) to compute compact and robust 

audio fingerprints.

● We explore contrastive learning framework by creating pairs of 
clean audio segments and its corresponding distorted version.

● Inspired by Shazam method, we attempt to locate the salient 
peaks/patches in the CNN features using the proposed the 
spectral-temporal attention mechanism. 

● Spectral-temporal attentions provides discriminative audio 
fingerprints.

● We devise our own custom resnet-like CNN architecture.

● We propose a simple yet effective subsequence search to precisely 
locate query timestamp. 

Approach
● Contrastive loss:

● Spectral-Temporal Attention:

● Subsequence Search:

○ Generate multiple sequence candidates Ci with their starting 
indice as Ii = Im - m, where Im is the retrieved index at mth position. 

○ Select Ii (time offset) with maximum agreement among candidates.

Figure 3: Index storing embeddings sequentially

Figure 1: Spectral-Temporal Attention mechanism

Figure 2: Subsequence search  

Feature Encoder
● We design custom resnet-like CNN architecture. 

● It consists of front-end and back-end. The Front-end consists of a 
CNN block with no subsampling in the spectral-temporal axis, and  
backend consists of sequentially stacked resnet blocks enhanced 
with spectral-temporal attention.

Experiments and Results
● Database: Free Music Archival (FMA)
● Distortions: Noise, Reverberation and time offset.
● Evaluation Metric:

○ Recall @ audio-level: Coarse search
○ Recall @ segment-level: Fine-grain search, ie. located timestamp 

within +- 50 ms.
● Baselines: MIPS2 and Audfprint3

● Indexing algorithm: Locality Sensitive Hashing (LSH)
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